Further Algebra and Functions V Cheat Sheet

Graphs of the Parabola, Ellipse and Hyperbola

Graphs of the parabola, ellipse and hyperbola are called conic sections because they are all found to be the intersection of a plane and a cone. They have a range of applications in mathematics and physics such as modelling planetary orbits.

The graph to the left displays an ellipse centred at the origin. The equation for this conic section is of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

The graph intercepts the x-axis at $(\pm a, 0$) and the y-axis at $(0, \pm b)$.

A hyperbola graph is shown to the right. Its equation has the form

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

The graph has x-intercepts at $(a, 0)$ and $(-a, 0)$. It also has asymptotes at $y= \pm \frac{b}{a} x$ as shown in the graph. It is noticeable that the graph is symmetric in the x-axis and y-axis. This is because the terms are both squared. The graph is also not defined for the range of values $-a<x<a$. When the x and y values are very large, the

An example of a special case of a hyperbola is of the form

$$
y=\frac{k}{x} \text { or } x y=w^{2} .
$$

This graph has vertices at (w, w) and
axis are the asymptotes of the grap

The final conic section is a parabola. This graph has a vertex at $(0,0)$ and takes the general form:

$$
y^{2}=4 a x
$$

In comparison to the hyperbola and ellipse graphs which have both x^{2} and y^{2} terms, whereas the parabola has only y^{2} terms

Finding Points of Intersection
Example 1: The line $y=d x+2$ intersects the hyperbola with equation $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ at two points. Find the range of possible values of d.

To find possible values for d, it is good to start by writing an equation for the intersection. The line $y=d x+2$ can be substituted into the parabola equation.
As the graph intersects the line at two points, the discriminant is positive. This takes the form: $b^{2}-4 a c>0$.
$\frac{x^{2}}{9}-\frac{(d x+2)^{2}}{16}=1$
$16 x^{2}-9(d x+2)^{2}=144$
$x^{2}-9\left(d^{2} x^{2}+4 d x+4\right)=$
$16 x^{2}-9\left(d^{2} x^{2}+4 d x+4\right)=144$
$16 x^{2}-9 d^{2} x^{2}-36 d x-180=0$
$-36 d)^{2}-4\left(16-9 d^{2}\right)(-180)>$
$1296 d^{2}+11520-6480 d^{2}>0$ 5184d $d^{2}>11520$ $d^{2}>\frac{20}{9}$

The quadratic inequality for d is solved by has two intervals.

AQA A Level Further Maths: Core

Horizontal and Vertical Stretches

ned by the scale factor a resulting in the coordinate $\frac{x}{a}$. When the y coordinate is transformed by a scale factor b, the coordinate becomes $\frac{y}{b}$ and this is a vertical stretch

Reflections in the Coordinate Axes and $\boldsymbol{y}= \pm \boldsymbol{x}$
A reflection in the y-axis is caused by replacing the coordinate x to $-x$ and a reflection in the x-axis occurs when the coordinate y is replaced by y. If the coordinates x and y are flipped to be y and x then there is reflection in the line $y=x$ and if the coordinates x and y are replaced by $-y$ and $-x$, respectively. This results in a reflection of the curve in $y=-x$.
Example 5: A hyperbola has the equation $\frac{x^{2}}{4}-\frac{y^{2}}{16}=1$. Find the equation of the resulting curve when this hyperbola is reflected in the line $y=-x$. Sketch the transformed graph

The transformation of the equation
 cordinate transforms from $x \rightarrow-$

and the y-coordinate from y
It is good to start by sketching the graph without the reflection as shown below and then determine the reflected asymptotes and points of interception.

$y= \pm 2$ $y= \pm 2$
No x-axis rea
$0, x^{2}=-16$
There are as
sympotes at $y=\frac{x}{2}$ and $y=-$

Composite Transformations Involving Rotations and Enlargements (A Level Only) The various anti-clockwise rotations and the relevant variable transformations are:

$$
\begin{array}{ll}
\text { - Rotation by } 90^{\circ}: x \rightarrow y, y \rightarrow-x & \text { These rules can be obtained by applying } \\
\text { Rotation by } 180^{\circ}: x \rightarrow-x, y \rightarrow-y & \text { the equivalent rotation matrices to }\binom{x}{y} .
\end{array}
$$

Example 6: A parabola has been transformed by rotation followed by an enlargement in the horizontal. It originally has the form $y^{2}=8 x$ and the transformed parabola has the form $x^{2}=-2 y$
a) Describe the transformation the parabola has experienced.

An ellipse of the form $9 x^{2}+4 y^{2}=36$ has undergone the same transformation as the parabola.
b) Find the equation of the transformed ellipse.
a) Clearly, x has been
replaced with $-y$, which
only fits one of the rotations. be determined by finding the scale factor the graph has been transformed by

b) Following the

transformation from part a)
the x and y coordinates transform and there
horizontal stretch.

The rotation is by 270° anticlockwise around the origin The equation after rotation is $x^{2}=-8 y$. From the enlargement
\(\left.\begin{array}{c}\left(\frac{x}{a}\right)^{2}=-8 y

x^{2}=-8 a^{2} y=-2 y

a^{2}=1 / 4\end{array}\right]\)| Re enlargement is centred at the origin with scale factor $\sqrt{\frac{1}{2} .}$ |
| :---: |
| Rotation : $\frac{y^{2}}{4}+\frac{x^{2}}{9}=1$ |
| Stretch: $: \frac{y^{2}}{4}+\frac{1}{9}\left(\frac{x}{\sqrt{\frac{1}{2}}}\right)^{2}=1$ |
| $\frac{y^{2}}{4}+\frac{2}{9} x^{2}=1$ |

